
Note: This is the 2024–2025 eCalendar. Current program and course information is now found in the ºÃÉ«TVl Course Catalogue at .
Note: This is the 2024–2025 eCalendar. Current program and course information is now found in the ºÃÉ«TVl Course Catalogue at .
Training in statistical theory and methods, applied data analysis, scientific collaboration, communication, and report writing by coursework and thesis.
Biostatistics : A review, appraisal of the performance, or application of, selected biostatistical methods, carried out under supervision.
Terms: Fall 2024, Winter 2025
Instructors: There are no professors associated with this course for the 2024-2025 academic year.
Students exempted from any of the courses listed below must replace them with complementary course credits, at the 500 level or higher, chosen in consultation with the student's academic adviser or supervisor.
Biostatistics : Examples of applications of statistics and probability in epidemiologic research. Source of epidemiologic data (surveys, experimental and non-experimental studies). Elementary data analysis for single and comparative epidemiologic parameters.
Terms: Fall 2024
Instructors: Dupuis, Josée (Fall)
Prerequisites: Permission of instructor. Undergraduate course in mathematical statistics at level of MATH 324.
Biostatistics : Multivariable regression models for proportions, rates and their differences/ratios; Conditional logic regression; Proportional hazards and other parametric/semi-parametric models; unmatched, nested, and self-matched case-control studies; links to Cox's method; Rate ratio estimation when "time-dependent" membership in contrasted categories.
Terms: Winter 2025
Instructors: Alam, Shomoita (Winter)
Mathematics & Statistics (Sci) : Exponential families, link functions. Inference and parameter estimation for generalized linear models; model selection using analysis of deviance. Residuals. Contingency table analysis, logistic regression, multinomial regression, Poisson regression, log-linear models. Multinomial models. Overdispersion and Quasilikelihood. Applications to experimental and observational data.
Terms: Winter 2025
Instructors: Steele, Russell (Winter)
Mathematics & Statistics (Sci) : Multivariate normal and chi-squared distributions; quadratic forms. Multiple linear regression estimators and their properties. General linear hypothesis tests. Prediction and confidence intervals. Asymptotic properties of least squares estimators. Weighted least squares. Variable selection and regularization. Selected advanced topics in regression. Applications to experimental and observational data.
Terms: Fall 2024
Instructors: Dagdoug, Mehdi (Fall)
Mathematics & Statistics (Sci) : Distribution theory, stochastic models and multivariate transformations. Families of distributions including location-scale families, exponential families, convolution families, exponential dispersion models and hierarchical models. Concentration inequalities. Characteristic functions. Convergence in probability, almost surely, in Lp and in distribution. Laws of large numbers and Central Limit Theorem. Stochastic simulation.
Terms: Fall 2024
Instructors: Khalili, Abbas (Fall)
Mathematics & Statistics (Sci) : Sufficiency, minimal and complete sufficiency, ancillarity. Fisher and Kullback-Leibler information. Elements of decision theory. Theory of estimation and hypothesis testing from the Bayesian and frequentist perspective. Elements of asymptotic statistics including large-sample behaviour of maximum likelihood estimators, likelihood-ratio tests, and chi-squared goodness-of-fit tests.
Terms: Winter 2025
Instructors: Genest, Christian (Winter)