BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250705T004312EDT-8291EDLHaa@132.216.98.100 DTSTAMP:20250705T044312Z DESCRIPTION:\n \n \n \n \n \n \n \n \n \n \n \n TITLE / TITRE\n\n (Almost) all roads lea d to Funk geometry\n \n ABSTRACT /RÉSUMÉ \n\n The Funk metric is a lesser-kno wn cousin of the Hilbert metric in the interior of a convex body\, which i n turn generalizes (the Beltrami-Klein model of) hyperbolic geometry. Afte r presenting the basics of the Funk metric and some of its surprising prop erties\, I will describe several problems in Funk geometry which relate to \, generalize and strengthen various well-known theorems and conjectures i n convex geometry (such as the Blaschke-Santaló inequality\, the Mahler co njecture\, and Schaeffer's dual girth conjecture)\, the Colbois-Verovic vo lume entropy conjecture in Hilbert geometry\, polyhedral combinatorics\, a nd Minkowski billiards. Partially based on a joint work with Constantin Ve rnicos and Cormac Walsh.\n\n PLACE /LIEU \n Hybride - CRM\, Salle / Room 534 0\, Pavillon André Aisenstadt\n \n \n \n \n \n \n \n \n \n \n \n\n DTSTART:20250117T193000Z DTEND:20250117T203000Z SUMMARY:Dmitry Faifman (Université de Montréal) URL:/mathstat/channels/event/dmitry-faifman-universite -de-montreal-362514 END:VEVENT END:VCALENDAR