BEGIN:VCALENDAR VERSION:2.0 PRODID:-//132.216.98.100//NONSGML kigkonsult.se iCalcreator 2.20.4// BEGIN:VEVENT UID:20250710T045155EDT-0605BDIUVm@132.216.98.100 DTSTAMP:20250710T085155Z DESCRIPTION:Title: Lower bounds on the inner radius of nodal domains of Lap lace eigenfunctions\n\nAbstract: Consider nodal domains (connected compone nts of the set where a function is non-zero) of Laplace eigenfunctions on a closed compact manifold. By Faber-Krahn's inequality\, a nodal domain ca nnot contain a ball of size C λ^{-1/2}. However\, it is harder to find low er bounds on the size of the biggest ball that can be contained inside a n odal domain.\n In this talk\, I will discuss a recent result (with Dan Mang oubi) that shows that it is always possible to find a ball of size C λ^{-1 /2} (log λ)^{-(d-2)/2}. The proof uses a mixture of old and new techniques \, some of which come from Brownion motion / heat kernel estimates\, while others come from recent advances on solutions to elliptic equations.\n\nW here: CRM\, Université de Montréal\, Pavillon André-Aisenstadt\, room 4186 or\n\nJoin Zoom Meeting\n\nhttps://umontreal.zoom.us/j/89528730384?pwd=IF 10Cg8C0YfogaBlL6F1NboPaQvAaV.1\n\nMeeting ID: 895 2873 0384\n\nPasscode: 0 77937\n DTSTART:20240920T140000Z DTEND:20240920T150000Z SUMMARY:Philippe Charron (Université de Genève) URL:/mathstat/channels/event/philippe-charron-universi te-de-geneve-359780 END:VEVENT END:VCALENDAR